Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Mol Immunol ; 19(1): 67-78, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1541184

RESUMEN

The global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused severe morbidity and mortality in humans. It is urgent to understand the function of viral genes. However, the function of open reading frame 10 (ORF10), which is uniquely expressed by SARS-CoV-2, remains unclear. In this study, we showed that overexpression of ORF10 markedly suppressed the expression of type I interferon (IFN-I) genes and IFN-stimulated genes. Then, mitochondrial antiviral signaling protein (MAVS) was identified as the target via which ORF10 suppresses the IFN-I signaling pathway, and MAVS was found to be degraded through the ORF10-induced autophagy pathway. Furthermore, overexpression of ORF10 promoted the accumulation of LC3 in mitochondria and induced mitophagy. Mechanistically, ORF10 was translocated to mitochondria by interacting with the mitophagy receptor Nip3-like protein X (NIX) and induced mitophagy through its interaction with both NIX and LC3B. Moreover, knockdown of NIX expression blocked mitophagy activation, MAVS degradation, and IFN-I signaling pathway inhibition by ORF10. Consistent with our observations, in the context of SARS-CoV-2 infection, ORF10 inhibited MAVS expression and facilitated viral replication. In brief, our results reveal a novel mechanism by which SARS-CoV-2 inhibits the innate immune response; that is, ORF10 induces mitophagy-mediated MAVS degradation by binding to NIX.


Asunto(s)
COVID-19/genética , COVID-19/virología , Inmunidad Innata/inmunología , Sistemas de Lectura Abierta , SARS-CoV-2/genética , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antivirales/metabolismo , Autofagia/inmunología , Silenciador del Gen , Células HEK293 , Células HeLa , Humanos , Interferón Tipo I/metabolismo , Mitocondrias/metabolismo , Mitofagia , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación , Proteínas Virales/metabolismo , Replicación Viral
2.
Front Immunol ; 12: 631821, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1344260

RESUMEN

Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.


Asunto(s)
Muerte Celular/inmunología , Neutrófilos/patología , Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/inmunología , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Radicales Libres/metabolismo , Humanos , Necroptosis/inmunología , Necrosis/inmunología , Necrosis/metabolismo , Activación Neutrófila , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fagocitosis/inmunología , Piroptosis/inmunología , Receptores de Muerte Celular/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1238060

RESUMEN

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic and has claimed over 2 million lives worldwide. Although the genetic sequences of SARS-CoV and SARS-CoV-2 have high homology, the clinical and pathological characteristics of COVID-19 differ significantly from those of SARS. How and whether SARS-CoV-2 evades (cellular) immune surveillance requires further elucidation. In this study, we show that SARS-CoV-2 infection leads to major histocompability complex class Ι (MHC-Ι) down-regulation both in vitro and in vivo. The viral protein encoded by open reading frame 8 (ORF8) of SARS-CoV-2, which shares the least homology with SARS-CoV among all viral proteins, directly interacts with MHC-Ι molecules and mediates their down-regulation. In ORF8-expressing cells, MHC-Ι molecules are selectively targeted for lysosomal degradation via autophagy. Thus, SARS-CoV-2-infected cells are much less sensitive to lysis by cytotoxic T lymphocytes. Because ORF8 protein impairs the antigen presentation system, inhibition of ORF8 could be a strategy to improve immune surveillance.


Asunto(s)
Presentación de Antígeno , COVID-19/inmunología , Regulación hacia Abajo/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Evasión Inmune , SARS-CoV-2/inmunología , Proteínas Virales/inmunología , Animales , Autofagia/genética , Autofagia/inmunología , COVID-19/genética , Chlorocebus aethiops , Células HEK293 , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Lisosomas/genética , Lisosomas/inmunología , Lisosomas/virología , Ratones , Ratones Transgénicos , SARS-CoV-2/genética , Células Vero , Proteínas Virales/genética
4.
Cells ; 10(5)2021 05 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1223960

RESUMEN

Viral pathogens often exploit host cell regulatory and signaling pathways to ensure an optimal environment for growth and survival. Several studies have suggested that 5'-adenosine monophosphate-activated protein kinase (AMPK), an intracellular serine/threonine kinase, plays a significant role in the modulation of infection. Traditionally, AMPK is a key energy regulator of cell growth and proliferation, host autophagy, stress responses, metabolic reprogramming, mitochondrial homeostasis, fatty acid ß-oxidation and host immune function. In this review, we highlight the modulation of host AMPK by various viruses under physiological conditions. These intracellular pathogens trigger metabolic changes altering AMPK signaling activity that then facilitates or inhibits viral replication. Considering the COVID-19 pandemic, understanding the regulation of AMPK signaling following infection can shed light on the development of more effective therapeutic strategies against viral infectious diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antivirales/farmacología , Transducción de Señal/inmunología , Virosis/inmunología , Antivirales/uso terapéutico , Autofagia/efectos de los fármacos , Autofagia/inmunología , COVID-19/epidemiología , COVID-19/inmunología , Proliferación Celular/efectos de los fármacos , Desarrollo de Medicamentos , Humanos , Pandemias/prevención & control , SARS-CoV-2/inmunología , Transducción de Señal/efectos de los fármacos , Virosis/tratamiento farmacológico , Replicación Viral/efectos de los fármacos , Replicación Viral/inmunología , Tratamiento Farmacológico de COVID-19
5.
Cell Rep ; 35(7): 109126, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1222854

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades most innate immune responses but may still be vulnerable to some. Here, we systematically analyze the impact of SARS-CoV-2 proteins on interferon (IFN) responses and autophagy. We show that SARS-CoV-2 proteins synergize to counteract anti-viral immune responses. For example, Nsp14 targets the type I IFN receptor for lysosomal degradation, ORF3a prevents fusion of autophagosomes and lysosomes, and ORF7a interferes with autophagosome acidification. Most activities are evolutionarily conserved. However, SARS-CoV-2 Nsp15 antagonizes IFN signaling less efficiently than the orthologs of closely related RaTG13-CoV and SARS-CoV-1. Overall, SARS-CoV-2 proteins counteract autophagy and type I IFN more efficiently than type II or III IFN signaling, and infection experiments confirm potent inhibition by IFN-γ and -λ1. Our results define the repertoire and selected mechanisms of SARS-CoV-2 innate immune antagonists but also reveal vulnerability to type II and III IFN that may help to develop safe and effective anti-viral approaches.


Asunto(s)
COVID-19/virología , SARS-CoV-2/inmunología , Proteínas Virales/inmunología , Animales , Antivirales/farmacología , Autofagosomas/inmunología , Autofagia/inmunología , COVID-19/inmunología , Línea Celular , Chlorocebus aethiops , Exorribonucleasas/inmunología , Células HEK293 , Células HeLa , Humanos , Evasión Inmune , Inmunidad Innata , Interferón Tipo I/metabolismo , Interferones/metabolismo , Receptor de Interferón alfa y beta/antagonistas & inhibidores , Receptor de Interferón alfa y beta/inmunología , SARS-CoV-2/patogenicidad , Células Vero , Proteínas no Estructurales Virales/inmunología
6.
Front Immunol ; 12: 614599, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1127983

RESUMEN

Widespread coronavirus disease (COVID)-19 is causing pneumonia, respiratory and multiorgan failure in susceptible individuals. Dysregulated immune response marks severe COVID-19, but the immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, which is hampering the development of efficient treatments. Here we analyzed ~140 parameters of cellular and humoral immune response in peripheral blood of 41 COVID-19 patients and 16 age/gender-matched healthy donors by flow-cytometry, quantitative PCR, western blot and ELISA, followed by integrated correlation analyses with ~30 common clinical and laboratory parameters. We found that lymphocytopenia in severe COVID-19 patients (n=20) strongly affects T, NK and NKT cells, but not B cells and antibody production. Unlike increased activation of ICOS-1+ CD4+ T cells in mild COVID-19 patients (n=21), T cells in severe patients showed impaired activation, low IFN-γ production and high functional exhaustion, which correlated with significantly down-regulated HLA-DR expression in monocytes, dendritic cells and B cells. The latter phenomenon was followed by lower interferon responsive factor (IRF)-8 and autophagy-related genes expressions, and the expansion of myeloid derived suppressor cells (MDSC). Intriguingly, PD-L1-, ILT-3-, and IDO-1-expressing monocytic MDSC were the dominant producers of IL-6 and IL-10, which correlated with the increased inflammation and accumulation of regulatory B and T cell subsets in severe COVID-19 patients. Overall, down-regulated IRF-8 and autophagy-related genes expression, and the expansion of MDSC subsets could play critical roles in dysregulating T cell response in COVID-19, which could have large implications in diagnostics and design of novel therapeutics for this disease.


Asunto(s)
Proteínas Relacionadas con la Autofagia/biosíntesis , COVID-19/inmunología , Células Supresoras de Origen Mieloide/inmunología , SARS-CoV-2/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Autofagia/inmunología , Proteínas Relacionadas con la Autofagia/inmunología , Proteínas Relacionadas con la Autofagia/metabolismo , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Inmunidad , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Células Supresoras de Origen Mieloide/patología , Subgrupos de Linfocitos T/patología , Linfocitos T/inmunología
7.
Med Hypotheses ; 146: 110434, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1065479

RESUMEN

Cancer cachexia (CC) is a progressive loss of muscle mass (with or without a decrease of adipose tissue). Gradual deterioration of the patient's fitness is resistant to nutritional intervention. The biochemical foundation of observed catabolism, detrimental protein, and energy balance is complex. However, the generalized inflammatory response plays a vital role. It is a kind of cytokine storm, which involves increased activity of TNF-α, IL-1, IL-6, and INF-γ. Pharmacological treatment of cachexia consists mainly of progestagens and glucocorticosteroids. Still, the assessment of new options limiting the harmful impact of cachexia could be beneficial. Chloroquine (CQ) and hydroxychloroquine (HCQ) are old antimalarial agents endowed with immunomodulatory properties. Being potent autophagy inhibitors, they could lead to a form of intracellular starvation in both cytokine-releasing cells and cancer cells, thus limiting the harmful impact of CC. CQ and HCQ are also efficient in particular connective tissue disorders. They have gained special attention since the World Health Organization announced the coronavirus disease 2019 (COVID-19) pandemic. According to initial reports, people with a severe inflammatory reaction showed significant benefits. Possibly they could not be attributed to the antiviral activity alone. It is worth noting that the cytokine storm in COVID-19, connective tissue disorders, and cancer cachexia share some similarities. Therefore, we hypothesize that low doses of CQ/HCQ may prove efficient in cancer cachexia.


Asunto(s)
Caquexia/tratamiento farmacológico , Caquexia/etiología , Cloroquina/uso terapéutico , Hidroxicloroquina/uso terapéutico , Modelos Biológicos , Neoplasias/complicaciones , Autofagia/efectos de los fármacos , Autofagia/inmunología , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/etiología , Citocinas/inmunología , Humanos , Factores Inmunológicos/uso terapéutico , Pandemias , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
8.
Curr Opin Microbiol ; 59: 50-57, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1017019

RESUMEN

Tripartite motif (TRIM) proteins are a highly versatile family of host-cell factors that play an integral role in the mammalian defense against pathogens. TRIM proteins regulate either transcription-dependent antiviral responses such as pro-inflammatory cytokine induction, or they modulate other important cell-intrinsic defense pathways like autophagy. Additionally, TRIM proteins exert direct antiviral activity whereby they antagonize specific viral components through diverse mechanisms. Here, we summarize the latest discoveries on the molecular mechanisms of antiviral TRIM proteins and also discuss current and future trends in this fast-evolving field.


Asunto(s)
Antivirales , Proteínas de Motivos Tripartitos , Animales , Antivirales/metabolismo , Autofagia/inmunología , Citocinas/inmunología , Humanos , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo
9.
Elife ; 92020 12 15.
Artículo en Inglés | MEDLINE | ID: covidwho-977809

RESUMEN

Vaccines are powerful tools to develop immune memory to infectious diseases and prevent excess mortality. In older adults, however vaccines are generally less efficacious and the molecular mechanisms that underpin this remain largely unknown. Autophagy, a process known to prevent aging, is critical for the maintenance of immune memory in mice. Here, we show that autophagy is specifically induced in vaccine-induced antigen-specific CD8+ T cells in healthy human volunteers. In addition, reduced IFNγ secretion by RSV-induced T cells in older vaccinees correlates with low autophagy levels. We demonstrate that levels of the endogenous autophagy-inducing metabolite spermidine fall in human T cells with age. Spermidine supplementation in T cells from old donors recovers their autophagy level and function, similar to young donors' cells, in which spermidine biosynthesis has been inhibited. Finally, our data show that endogenous spermidine maintains autophagy via the translation factor eIF5A and transcription factor TFEB. In summary, we have provided evidence for the importance of autophagy in vaccine immunogenicity in older humans and uncovered two novel drug targets that may increase vaccination efficiency in the aging context.


Asunto(s)
Envejecimiento/inmunología , Autofagia/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Espermidina/farmacología , Adyuvantes Inmunológicos/farmacología , Adulto , Anciano , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular Tumoral , Humanos , Memoria Inmunológica/inmunología , Interferón gamma/sangre , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Virus Sincitiales Respiratorios/inmunología , Espermidina/sangre , Vacunación , Adulto Joven
10.
Cells ; 9(9)2020 08 24.
Artículo en Inglés | MEDLINE | ID: covidwho-727401

RESUMEN

The preservation of cellular homeostasis requires the synthesis of new proteins (proteostasis) and organelles, and the effective removal of misfolded or impaired proteins and cellular debris. This cellular homeostasis involves two key proteostasis mechanisms, the ubiquitin proteasome system and the autophagy-lysosome pathway. These catabolic pathways have been known to be involved in respiratory exacerbations and the pathogenesis of various lung diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and coronavirus disease-2019 (COVID-19). Briefly, proteostasis and autophagy processes are known to decline over time with age, cigarette or biomass smoke exposure, and/or influenced by underlying genetic factors, resulting in the accumulation of misfolded proteins and cellular debris, elevating apoptosis and cellular senescence, and initiating the pathogenesis of acute or chronic lung disease. Moreover, autophagic dysfunction results in an impaired microbial clearance, post-bacterial and/or viral infection(s) which contribute to the initiation of acute and recurrent respiratory exacerbations as well as the progression of chronic obstructive and restrictive lung diseases. In addition, the autophagic dysfunction-mediated cystic fibrosis transmembrane conductance regulator (CFTR) immune response impairment further exacerbates the lung disease. Recent studies demonstrate the therapeutic potential of novel autophagy augmentation strategies, in alleviating the pathogenesis of chronic obstructive or restrictive lung diseases and exacerbations such as those commonly seen in COPD, CF, ALI/ARDS and COVID-19.


Asunto(s)
Autofagia/inmunología , Betacoronavirus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Progresión de la Enfermedad , Neumonía Viral/inmunología , Neumonía Viral/metabolismo , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/metabolismo , COVID-19 , Infecciones por Coronavirus/virología , Fibrosis Quística/inmunología , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Homeostasis , Humanos , Fibrosis Pulmonar Idiopática/inmunología , Fibrosis Pulmonar Idiopática/metabolismo , Lisosomas/metabolismo , Pandemias , Neumonía Viral/virología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/metabolismo , SARS-CoV-2
11.
Cells ; 9(8)2020 07 25.
Artículo en Inglés | MEDLINE | ID: covidwho-698553

RESUMEN

The outbreak of the coronavirus disease 2019 (COVID-19) pandemic has caused a global public health crisis. Viral infections may predispose pregnant women to a higher rate of pregnancy complications, including preterm births, miscarriage, and stillbirth. Despite reports of neonatal COVID-19, definitive proof of vertical transmission is still lacking. In this review, we summarize studies regarding the potential evidence for transplacental transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), characterize the expression of its receptors and proteases, describe the placental pathology and analyze virus-host interactions at the maternal-fetal interface. We focus on the syncytium, the barrier between mother and fetus, and describe in detail its physical and structural defense against viral infections. We further discuss the potential molecular mechanisms, whereby the placenta serves as a defense front against pathogens by regulating the interferon type III signaling, microRNA-triggered autophagy and the nuclear factor-κB pathway. Based on these data, we conclude that vertical transmission may occur but rare, ascribed to the potent physical barrier, the fine-regulated placental immune defense and modulation strategies. Particularly, immunomodulatory mechanisms employed by the placenta may mitigate violent immune response, maybe soften cytokine storm tightly associated with severely ill COVID-19 patients, possibly minimizing cell and tissue damages, and potentially reducing SARS-CoV-2 transmission.


Asunto(s)
Infecciones por Coronavirus/transmisión , Transmisión Vertical de Enfermedad Infecciosa , Placenta/inmunología , Placenta/virología , Neumonía Viral/transmisión , Complicaciones Infecciosas del Embarazo/inmunología , Autofagia/inmunología , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Femenino , Humanos , Recién Nacido , MicroARNs/genética , MicroARNs/metabolismo , Pandemias , Placenta/metabolismo , Placenta/patología , Neumonía Viral/inmunología , Neumonía Viral/virología , Embarazo , Complicaciones Infecciosas del Embarazo/virología , SARS-CoV-2
12.
Eur J Endocrinol ; 183(5): R133-R147, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-695333

RESUMEN

The SARS-CoV-2 virus responsible for the COVID-19 pandemic has generated an explosion of interest both in the mechanisms of infection leading to dissemination and expression of this disease, and in potential risk factors that may have a mechanistic basis for disease propagation or control. Vitamin D has emerged as a factor that may be involved in these two areas. The focus of this article is to apply our current understanding of vitamin D as a facilitator of immunocompetence both with regard to innate and adaptive immunity and to consider how this may relate to COVID-19 disease. There are also intriguing potential links to vitamin D as a factor in the cytokine storm that portends some of the most serious consequences of SARS-CoV-2 infection, such as the acute respiratory distress syndrome. Moreover, cardiac and coagulopathic features of COVID-19 disease deserve attention as they may also be related to vitamin D. Finally, we review the current clinical data associating vitamin D with SARS-CoV-2 infection, a putative clinical link that at this time must still be considered hypothetical.


Asunto(s)
Inmunidad Adaptativa/inmunología , Infecciones por Coronavirus/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Inmunidad Innata/inmunología , Inmunocompetencia/inmunología , Pulmón/inmunología , Neumonía Viral/inmunología , Linfocitos T/inmunología , Vitamina D/inmunología , Péptidos Catiónicos Antimicrobianos/inmunología , Autofagia/inmunología , Betacoronavirus , COVID-19 , Defensinas/inmunología , Humanos , Pandemias , SARS-CoV-2 , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología , Vitamina D/análogos & derivados , Catelicidinas
13.
Front Immunol ; 11: 1337, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-687353

RESUMEN

Autophagy is a cellular recycling system found in almost all types of eukaryotic organisms. The system is made up of a variety of proteins which function to deliver intracellular cargo to lysosomes for formation of autophagosomes in which the contents are degraded. The maintenance of cellular homeostasis is key in the survival and function of a variety of human cell populations. The interconnection between metabolism and autophagy is extensive, therefore it has a role in a variety of different cell functions. The disruption or dysfunction of autophagy in these cell types have been implicated in the development of a variety of inflammatory diseases including asthma. The role of autophagy in non-immune and immune cells both lead to the pathogenesis of lung inflammation. Autophagy in pulmonary non-immune cells leads to tissue remodeling which can develop into chronic asthma cases with long term effects. The role autophagy in the lymphoid and myeloid lineages in the pathology of asthma differ in their functions. Impaired autophagy in lymphoid populations have been shown, in general, to decrease inflammation in both asthma and inflammatory disease models. Many lymphoid cells rely on autophagy for effector function and maintained inflammation. In stark contrast, autophagy deficient antigen presenting cells have been shown to have an activated inflammasome. This is largely characterized by a TH17 response that is accompanied with a much worse prognosis including granulocyte mediated inflammation and steroid resistance. The cell specificity associated with changes in autophagic flux complicates its targeting for amelioration of asthmatic symptoms. Differing asthmatic phenotypes between TH2 and TH17 mediated disease may require different autophagic modulations. Therefore, treatments call for a more cell specific and personalized approach when looking at chronic asthma cases. Viral-induced lung inflammation, such as that caused by SARS-CoV-2, also may involve autophagic modulation leading to inflammation mediated by lung resident cells. In this review, we will be discussing the role of autophagy in non-immune cells, myeloid cells, and lymphoid cells for their implications into lung inflammation and asthma. Finally, we will discuss autophagy's role viral pathogenesis, immunometabolism, and asthma with insights into autophagic modulators for amelioration of lung inflammation.


Asunto(s)
Asma/complicaciones , Asma/patología , Autofagia/inmunología , Betacoronavirus , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/patología , Neumonía Viral/complicaciones , Neumonía Viral/patología , Animales , Asma/inmunología , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Células Dendríticas/metabolismo , Humanos , Linfocitos/metabolismo , Lisosomas/metabolismo , Células Mieloides/metabolismo , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/inmunología , Mucosa Respiratoria/metabolismo , SARS-CoV-2 , Transducción de Señal/inmunología
14.
Mediators Inflamm ; 2020: 7527953, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-656906

RESUMEN

COVID-19 is a pandemic disease caused by the new coronavirus SARS-CoV-2 that mostly affects the respiratory system. The consequent inflammation is not able to clear viruses. The persistent excessive inflammatory response can build up a clinical picture that is very difficult to manage and potentially fatal. Modulating the immune response plays a key role in fighting the disease. One of the main defence systems is the activation of neutrophils that release neutrophil extracellular traps (NETs) under the stimulus of autophagy. Various molecules can induce NETosis and autophagy; some potent activators are damage-associated molecular patterns (DAMPs) and, in particular, the high-mobility group box 1 (HMGB1). This molecule is released by damaged lung cells and can induce a robust innate immunity response. The increase in HMGB1 and NETosis could lead to sustained inflammation due to SARS-CoV-2 infection. Therefore, blocking these molecules might be useful in COVID-19 treatment and should be further studied in the context of targeted therapy.


Asunto(s)
Alarminas/inmunología , Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Trampas Extracelulares/inmunología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/inmunología , Alarminas/antagonistas & inhibidores , Autofagia/inmunología , Betacoronavirus/inmunología , COVID-19 , Infecciones por Coronavirus/patología , Trampas Extracelulares/efectos de los fármacos , Proteína HMGB1/antagonistas & inhibidores , Proteína HMGB1/inmunología , Interacciones Microbiota-Huesped/inmunología , Humanos , Interleucina-6/antagonistas & inhibidores , Interleucina-6/inmunología , Pulmón/inmunología , Pulmón/patología , Pandemias , Neumonía Viral/patología , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
15.
Semin Cell Dev Biol ; 101: 3-11, 2020 05.
Artículo en Inglés | MEDLINE | ID: covidwho-154659

RESUMEN

Autophagy is an evolutionarily conserved process central to host metabolism. Among its major functions are conservation of energy during starvation, recycling organelles, and turnover of long-lived proteins. Besides, autophagy plays a critical role in removing intracellular pathogens and very likely represents a primordial intrinsic cellular defence mechanism. More recent findings indicate that it has not only retained its ability to degrade intracellular pathogens, but also functions to augment and fine tune antiviral immune responses. Interestingly, viruses have also co-evolved strategies to manipulate this pathway and use it to their advantage. Particularly intriguing is infection-dependent activation of autophagy with positive stranded (+)RNA virus infections, which benefit from the pathway without succumbing to lysosomal degradation. In this review we summarise recent data on viral manipulation of autophagy, with a particular emphasis on +RNA viruses and highlight key unanswered questions in the field that we believe merit further attention.


Asunto(s)
Autofagia/inmunología , Virus ARN/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA